1. Gravitational Potential Energy

The 0.50 kg sphere to the right is immersed in a gravitational field created by a planet with a mass of $2.0 \times 10^{20} \mathrm{~kg}$ and a radius of $3.0 \times 10^{4} \mathrm{~m}$.
a. What is the strength of the field at the surface of the planet?

$$
g=G M / R^{2}=\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \cdot 2 \times 10^{20} \mathrm{~kg}}{\left(3 \times 10^{4} \mathrm{~m}\right)^{2}}
$$

$$
g=14.8 \mathrm{~N} / \mathrm{kg}
$$

c. How much work must be done to raise the mass 3.0 m above the surface?

$$
\mathrm{W}=\mathrm{F} \cdot \mathrm{~d}=7.4 \mathrm{~N} \cdot 3 \mathrm{~m}=22.2 \mathrm{~J}
$$

d. How much gravitational potential energy does the sphere have when it's 3.0 m above the surface?

$$
P E=W=22.2 \mathrm{~J}
$$

e. If the sphere were dropped, how much kinetic energy would it have right before it hit the surface?

$$
K E_{\text {bottom }}=P E_{t o p}=22.2 \mathrm{~J}
$$

f. How fast would it be moving right before it hit?

$$
\begin{aligned}
\mathrm{KE}=1 / 2 \mathrm{~m} v^{2} \therefore v & =(2 \mathrm{KE} / \mathrm{m}) \\
v & =(2 \cdot 22.2 \mathrm{~J} / 0.5 \mathrm{~kg}) \\
v & =9.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Electric Potential Energy

The sphere to the right has a charge of 50 nC and is immersed in an electric field created by two charged circular plates. The charge on each plate is $20 \mu \mathrm{C}$ (top + , bottom -) and each plate's radius is 15 cm .
a. What is the strength of the field between the plates?

$$
\begin{aligned}
E & =4 \mathrm{kQ} / \mathrm{A}=4 \mathrm{kQ} / \mathrm{r}^{2}=4 \mathrm{kQ} / \mathrm{r}^{2} \\
& =4.9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \cdot 20 \times 10^{-6} \mathrm{C} \\
& =3.2 \times 10^{7} \mathrm{~N} / \mathrm{C}=32 \mathrm{MN} / \mathrm{C}
\end{aligned}
$$

b. How much force must be exerted to lift the charge?

$$
\begin{aligned}
& F=q E=50 \times 10^{-9} \mathrm{C} \cdot 32 \times 10^{6} \mathrm{~N} / \mathrm{C} \\
& F=1.6 \mathrm{~N}
\end{aligned}
$$

c. How much work must be done to raise the charge 2 cm away from the negative plate?

$$
\begin{aligned}
& W=F \cdot d=1.6 \mathrm{~N} \cdot 0.02 \mathrm{~m} \\
& W=0.032 \mathrm{~J}=32 \mathrm{~mJ}
\end{aligned}
$$

d. How much electric potential energy does the sphere have when it's 2 cm away from the negative plate?

$$
P E=W=0.032 \mathrm{~J}
$$

e. If the charge were released, how much kinetic energy would it have right before it hit the negative plate?

$$
K E_{n e g}=P E_{p o s}=0.032 \mathrm{~J}
$$

f. If the sphere had a mass of 1.0 g , how fast would it be

$$
\begin{aligned}
& K E=1 / 2 m v^{2} \therefore v=(2 K E / m) \\
& v=(2 \cdot 0.032 \mathrm{~J} / 0.001 \mathrm{~kg}) \\
& v=8.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

 moving right before it hit? (Neglect gravity.)

