1. a. Calculate the strength of the earth's gravitational field at the surface of the earth. (The earth's mass is $5.98 \times 10^{24} \mathrm{~kg}$ and the earth's radius is $6.37 \times 10^{6} \mathrm{~m}$.)

$$
\begin{aligned}
& g=\frac{F}{m}=\frac{G M}{R^{2}}=\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 5.98 \times 10^{2} \mathrm{~kg}}{\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& g=9.83 \mathrm{~N} / \mathrm{kg}
\end{aligned}
$$

b. What is the force acting on a 10 kg mass at this point?

$$
F=m g=10 \mathrm{~kg} \cdot 9.83 \mathrm{~N} / \mathrm{kg}=98.3 \mathrm{~N}
$$

2. a. Do you recognize the number from your answer in 1. a? What did we previously call this number?

Acceleration due to gravity

b. Are the units $\mathrm{m} / \mathrm{s}^{2}$ equivalent to N / kg ? Which units $\left(\mathrm{m} / \mathrm{s}^{2}\right.$ or N / kg) are better suited to describe gravitational field strength (force per unit mass)?

$$
\frac{\mathrm{N}}{\mathrm{~kg}} \quad \frac{\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~kg}} \quad \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \begin{aligned}
& \text { Force per mass should be } \\
& \text { measured in } \mathrm{N} / \mathrm{kg}
\end{aligned}
$$

3. Acceleration due to gravity at the surface of the moon is $1.6 \mathrm{~m} / \mathrm{s}^{2}$. What is the strength of the gravitational field at the surface of the moon?

1.6 N/kg

4. a. What is the electric field strength 0.30 m away from a Van de Graaff generator with a charge of $1.2 \mu \mathrm{C}$?

$$
\begin{aligned}
& E=\frac{F}{q}=\frac{k Q}{R^{2}}=\frac{9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 12 \times 10^{-3} \mathrm{C}}{(0.3 \mathrm{~m})^{2}} \\
& E=120,000 \mathrm{~N} / \mathrm{C}=120 \mathrm{kN} / \mathrm{C}
\end{aligned}
$$

b. What is the force on a $0.1 \mu \mathrm{C}$ test charge at this point (0.30 m from the generator)?

$$
F=q E=0.1 \times 10^{-6} \mathrm{C} \cdot 120,000 \mathrm{~N} / \mathrm{C}=0.012 \mathrm{~N}
$$

5. Without using your calculator, can you determine the strength of the field at 0.60 m from the same charge (from 4) ...You should be able to do this! (Use your calculator to check your estimate.)

Since the distance is doubled, the field is reduced to $1 / 2^{2}$ $=1 / 4$ its original value: $E=30 \mathrm{kN} / \mathrm{C}$
6. Two cookie sheets (flat metal plates) are given opposite charges. The left plate has a charge of $+5 \mu \mathrm{C}$ and the right plate has a charge of $-5 \mu \mathrm{C}$. Each plate has an area of $0.90 \mathrm{~m}^{2}$ (for a total of $1.8 \mathrm{~m}^{2}$) and the plates are separated by a distance of 0.02 m . What is the electric field strength between the plates?

$$
\begin{aligned}
& E=4 \mathrm{kQ} / \mathrm{A}=\frac{4 \cdot 9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} .5 \times 10^{-6} \mathrm{C}}{0.9 \mathrm{~m}^{2}} \\
& E=6.3 \times 10^{6} \mathrm{~N} / \mathrm{C}=630 \mathrm{kN} / \mathrm{C}
\end{aligned}
$$

