PhyzExamples: Electricicty

Dhysical Quantities•Symbols• Units•Briel Definitions

Charge • q or $Q \bullet$ coulomb [KOO lom]: $\mathrm{C} \bullet$ A characteristic of certain fundamental particles.
Elementary Charge $\bullet e=1.6 \times 10^{-19} \mathrm{C} \bullet$ The quantity of charge carried by protons and electrons.
Electric Field • $E \bullet$ newton per coulomb: N/C or volt per meter: V/m • The electric force experienced by each unit of charge in a particular location.
Coulomb Constant $\cdot k=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$.
Masses \cdot Electron: $9.11 \times 10^{-31} \mathrm{~kg} \cdot$ Proton: $1.67 \times 10^{-27} \mathrm{~kg} \cdot$ Neutron: $1.67 \times 10^{-27} \mathrm{~kg}$
Current •I• coulomb per second: C/s or ampere: A • The rate at which electric charge flows.
Voltage $\bullet V$ or $\mathcal{S} \bullet$ joule per coulomb: J / C or volt: $\mathrm{V} \bullet$ Electric potential energy per unit of charge; electric "oomph."
Resistance $\bullet R \bullet$ volt per amp: V/A or ohm: $\Omega \bullet$ A measure of the obstruction to flow of electric charge that a body possesses.
Power • P • watt: W • The rate at which energy is transferred in an electric circuit.

Equations

$F=k q_{1} q_{2} / R^{2} \cdot$ Coulomb's Law \bullet electric force $=$ coulomb constant \cdot charge on one body - charge on another body / square of the distance between the charged bodies
$E=F / q \cdot$ electric field $=$ electric force $/$ charge
$I=q / t \cdot$ current $=$ charge $/$ time
$I=V / R$ or $\mathcal{E} / R \bullet$ Ohm's Law \bullet current $=$ voltage $/$ resistance
$P=I V$ or $I \mathcal{B} \cdot$ Joule's Law \bullet power $=c u r r e n t \cdot$ voltage
$P=I^{2} R \cdot$ power $=$ square of current \cdot resistance
$P=V^{2} / R$ or $\mathcal{E}^{2} / R \cdot$ power $=$ square of voltage $/$ resistance

Smooth Operations Examples

1. What is the force on $\mathrm{a}+2.3 \mu \mathrm{C}$ charge that lies 3.7 m to the left of $\mathrm{a}-5.1 \mu \mathrm{C}$ charge?
2. $q_{1}=+2.3 \times 10^{-6} \mathrm{C} \quad q_{2}=-5.1 \times 10^{-6} \mathrm{C}$ $R=3.7 \mathrm{~m} \quad \mathrm{~F}=$?
$F=k q_{1} q_{2} / R^{2}$
$\mathrm{F}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(+2.3 \times 10^{-6} \mathrm{C}\right)$.
$\left(-5.1 \times 10^{-6} \mathrm{C}\right) /(3.7 \mathrm{~m})^{2}$
$\mathrm{F}=-0.0077 \mathrm{~N}$ ("-" indicates attraction)
3. How far is $\mathrm{a}+4.5 \mathrm{mC}$ from a -8.2 mC if there is a force of 13 N between them?
4. $q_{1}=+4.5 \times 10^{-3} \mathrm{C} \quad q_{2}=-8.2 \times 10^{-3} \mathrm{C}$
$F=13 \mathrm{~N} \quad \mathrm{R}=$?
Note: the force is attractive so use -13 N
$F=k q_{1} q_{2} / R^{2}$
$R=\sqrt{ }\left(k q_{1} q_{2} / F\right)$
$R=\sqrt{ }\left[9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(+4.5 \times 10^{-3} \mathrm{C}\right)\right.$
$\left.\left(-8.2 \times 10^{-3} \mathrm{C}\right) /(-13 \mathrm{~N})\right]$
$\mathrm{R}=160 \mathrm{~m}$

Smooth Operations Examples

1. What is the force on $\mathrm{a}+2.3 \mu \mathrm{C}$ charge that lies 3.7 m to the left of $\mathrm{a}-5.1 \mu \mathrm{C}$ charge?
2. $q_{1}=+2.3 \times 10^{-6} \mathrm{C} \quad q_{2}=-5.1 \times 10^{-6} \mathrm{C}$ $R=3.7 \mathrm{~m} \quad \mathrm{~F}=$?
$F=k q_{1} q_{2} / R^{2}$
$\mathrm{F}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(+2.3 \times 10^{-6} \mathrm{C}\right)$.
$\left(-5.1 \times 10^{-6} \mathrm{C}\right) /(3.7 \mathrm{~m})^{2}$
$\mathrm{F}=-0.0077 \mathrm{~N}$ ("-" indicates
attraction)
3. A droplet of ink in an inkjet printer has a charge of 370 nC . It is directed by an electric force of 82 mN as it passes through the print head's electric field. What is the strength of the electric field in the print head?
4. $q=370 \times 10^{-9} \mathrm{C} \quad \mathrm{F}=82 \times 10^{-6} \mathrm{~N}$
$E=F / q$
$E=82 \times 10^{-6} \mathrm{~N} / 370 \times 10^{-9} \mathrm{C}$
$E=220 \mathrm{~N} / \mathrm{C}$
5. A current of 0.82 A passes through a $47-\Omega$ resistor. What is the potential difference across the resistor?
(The question is asking for the voltage.)
6. $1=0.82 A \quad R=47 \Omega \quad V=$?
$I=V / R$
$V=\mathbb{R}$
$V=0.82 \mathrm{~A} .47 \Omega$
$V=39 \mathrm{~V}$
7. What is the resistance of a $1500-\mathrm{W}$ hair dryer that draws 13 A of current?
8. $P=1500 \mathrm{~W} \quad \mathrm{I}=13 \mathrm{~A} \quad \mathrm{R}=$?
$P=I^{2} R$
$R=P / I^{2}$
$R=1500 \mathrm{~W} /(13 \mathrm{~A})^{2}$
$\underline{R}=8.9 \Omega$
9. How far is a +4.5 mC from a -8.2 mC if there is a force of 13 N between them?
10. $q_{1}=+4.5 \times 10^{-3} \mathrm{C} \quad q_{2}=-8.2 \times 10^{-3} \mathrm{C}$
$\mathrm{F}=13 \mathrm{~N} \quad \mathrm{R}=$?
Note: the force is attractive so use -13 N
$F=k q_{1} q_{2} / R^{2}$
$R=\sqrt{ }\left(k q_{1} q_{2} / F\right)$
$R=\sqrt{ }\left[9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\left(+4.5 \times 10^{-3} \mathrm{C}\right)\right.$
$\left.\left(-8.2 \times 10^{-3} \mathrm{C}\right) /(-13 \mathrm{~N})\right]$
$\mathrm{R}=160 \mathrm{~m}$
11. What is the current in a wire if 15.7 C of charge move past a point in the wire every 2.3 s ?
12. $q=15.7 \mathrm{C} \quad \mathrm{t}=2.3 \mathrm{~s} \quad \mathrm{I}=$?
$I=q / t$
$I=15.7 \mathrm{C} / 2.3 \mathrm{~s}$
$I=6.8 \mathrm{~A}$
13. If a $100-\mathrm{W}$ stereo system is plugged into the $120-\mathrm{V}$ line voltage used in US homes, how much current does it draw?
14. $P=100 \mathrm{~W} \quad V=120 \mathrm{~V} \quad \mathrm{I}=$?
$P=I V$
$I=P / V$
$\mathrm{I}=100 \mathrm{~W} / 120 \mathrm{~V}$
$\mathrm{I}=0.83 \mathrm{~A}$
15. An appliance with a resistance of 36Ω operates at 9.0 V . At what rate does it dissipate energy? (That is, what's the power?)
16. $R=36 \Omega \quad V=9.0 \vee P=$?
$P=V^{2} / R$
$P=(9.0 V)^{2} / 36 \Omega$
$P=2.3 \mathrm{~W}$
