PhyzExamples: Rotation

Smooth Operations: Kinematics

1. [Rot UM] How long does it take for a record spinning at 33.3 rpm to rotate through 100 radians?
2. $\omega=33.3 \mathrm{rev} / \mathrm{min} \times 2 \mathrm{~T} \mathrm{rad} / \mathrm{rev} \times 1 \mathrm{~min} / 60 \mathrm{~s}$
$\omega=3.49 \mathrm{rad} / \mathrm{s} \quad \theta=100 \mathrm{rad} \mathrm{t}=$?
$\omega=\theta / \mathrm{t}$
$t=\theta / \omega$
$\mathrm{t}=100 \mathrm{rad} / 3.49 \mathrm{rad} / \mathrm{s}$
$t=28.7 \mathrm{~s}$
3. [Rot UAM] A tire on my PhyzVan had an angular acceleration of $-5 \mathrm{rad} / \mathrm{s}^{2}$. If the wheel was originally turning at $80 \mathrm{rad} / \mathrm{s}$ and turned through 500 rad during the deceleration, what was the final speed of the wheel?
4. $\theta=500 \mathrm{rad} \omega 0=80 \mathrm{rad} / \mathrm{s} \omega=$?
$\alpha=-5 \mathrm{rad} / \mathrm{s} 2 \quad \mathrm{t}=$?
$\omega^{2}=\omega^{2}+2 \alpha \theta$
$\omega=\sqrt{ }\left(\omega o^{2}+2 \alpha \theta\right)$
$\omega=\sqrt{ }\left((80 \mathrm{rad} / \mathrm{s})^{2}+2(-5 \mathrm{rad} / \mathrm{s} 2)(500 \mathrm{rad})\right)$
$\omega=37 \mathrm{rad} / \mathrm{s}$

Smooth Operations: Dynamics 1

5 . How far must a force of 50 N be placed along a wrench so that a torque of $10 \mathrm{~N} \cdot \mathrm{~m}$ can be achieved?
5. $\mathrm{F}=50 \mathrm{~N} \quad \tau=10 \mathrm{~N} \cdot \mathrm{~m} \quad \mathrm{r}=$?
$\tau=r \times F$
$r=\tau / F$
$\mathrm{r}=10 \mathrm{~N} \cdot \mathrm{~m} / 50 \mathrm{~N}$
$r=0.2 \mathrm{~m}=20 \mathrm{~cm}$
7. How much torque is needed to angularly accelerate a $3-\mathrm{kg} \cdot \mathrm{m}^{2}$ fan blade at $12 \mathrm{rad} / \mathrm{s}^{2}$?
7. $\mathrm{I}=3 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \alpha=12 \mathrm{rad} / \mathrm{s}^{2}$
$\tau=1 \alpha$
$\tau=3 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 12 \mathrm{rad} / \mathrm{s}^{2}$
$\tau=36 \mathrm{~N} \cdot \mathrm{~m}$ [The $\mathrm{N} \cdot \mathrm{m}$ here are NOT joules!]
2. [Rot UAM] What is the angular acceleration of a compact disc that begins at rest and accelerates to $50 \mathrm{rad} / \mathrm{s}$ in 1.5 s ?
2. $\theta=? \omega 0=0 \omega=50 \mathrm{rad} / \mathrm{s} \alpha=? \mathrm{t}=1.5 \mathrm{~s}$
$\omega=\omega o+\alpha t$
$\alpha=\omega / \mathrm{t}$
$\alpha=50 \mathrm{rad} / \mathrm{s} / 1.5 \mathrm{~s}$
$\alpha=33.3 \mathrm{rad} / \mathrm{s} 2$
4. [Rolling] An oil barrel ($\mathrm{r}=40 \mathrm{~cm}$) rolls on a level surface at $6 \mathrm{~m} / \mathrm{s}$. What is the barrel's angular speed?

$$
\begin{aligned}
& \text { 4. } v=6 \mathrm{~m} / \mathrm{s} \quad \mathrm{r}=0.4 \mathrm{~m} \quad \omega=\text { ? } \\
& v=r \omega \\
& \omega=v / \mathrm{r} \\
& \omega=6 \mathrm{~m} / \mathrm{s} / 0.4 \mathrm{~m} \\
& \omega=15 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

6. What is the mass of a basketball whose diameter is 30 cm and whose moment of inertia is $0.0075 \mathrm{~kg} \cdot \mathrm{~m}^{2}$?
```
6. \(\mathrm{R}=\mathrm{D} / 2=0.15 \mathrm{~m} \quad \mathrm{I}=0.0075 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \mathrm{M}=\) ?
\(\mathrm{I}=(2 / 3) \mathrm{MR}{ }^{2}\) [hollow sphere]
\(M=(3 / 2) I / R^{2}\)
\(\mathrm{M}=(3 / 2) 0.0075 \mathrm{~kg} \cdot \mathrm{~m}^{2} /(0.15 \mathrm{~m})^{2}\)
\(\mathrm{M}=0.5 \mathrm{~kg}\)
```

8. What is the combined rotational inertia of Jenny and the rotating stool she's sitting on if a torque of $20 \mathrm{~N} \cdot \mathrm{~m}$ causes an angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$?
9. $\tau=20 \mathrm{~N} \cdot \mathrm{~m} \quad \alpha=2 \mathrm{rad} / \mathrm{s}^{2}$
$\tau=\mid \alpha$
$1=\tau / \alpha$
$\mathrm{I}=20 \mathrm{~N} \cdot \mathrm{~m} / 2 \mathrm{rad} / \mathrm{s}^{2}$
$\mathrm{I}=10 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Smooth Operations: Dynamics 2 \& 3

9. What is the angular momentum of a $20-\mathrm{g}$, $11.8-\mathrm{cm}$ compact disc spinning at 500 rpm ?
10. $\mathrm{m}=20 \mathrm{~g}=0.020 \mathrm{~kg}$
$r=d / 2=5.9 \mathrm{~cm}=0.059 \mathrm{~m}$
$\omega=500 \mathrm{rev} / \mathrm{min} \times 2 \mathrm{Trad} / \mathrm{rev} \times 1 \mathrm{~min} / 60 \mathrm{~s}$
$\omega=52.4 \mathrm{rad} / \mathrm{s}$
$\mathrm{L}=\mathrm{I} \omega=(1 / 2) \mathrm{mr}^{2} \cdot \omega$
$\mathrm{L}=(1 / 2) 0.020 \mathrm{~kg} \cdot(0.059 \mathrm{~m})^{2} \cdot 52.4 \mathrm{rad} / \mathrm{s}$
$\mathrm{L}=0.0018 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \underline{\mathrm{s}}$
11. To what angular speed did Jearl accelerate the merry-go-round if its rotational inertia was $300 \mathrm{~kg} \cdot \mathrm{~m}^{2}$?
12. $\mathrm{KE}=754 \mathrm{~J} \quad \mathrm{I}=300 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$K E=(1 / 2)!\omega^{2}$
$\omega=\sqrt{ }(2 K E / I)$
$\omega=\sqrt{ }\left(2 \cdot 754 \mathrm{~N} \cdot \mathrm{~m} / 300 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
$\omega=2.24 \mathrm{rad} / \mathrm{s}$
13. How much work does Jearl do on the merry-go-round if he applies a torque of $120 \mathrm{~N} \cdot \mathrm{~m}$ while accelerating it through $2 \pi \mathrm{rad}$?
14. $\tau=120 \mathrm{~N} \cdot \mathrm{~m} \quad \theta=2 \pi \mathrm{rad}$
$\mathrm{W}=\tau \theta$
$\mathrm{W}=120 \mathrm{~N} \cdot \mathrm{~m} \cdot 2 \pi \mathrm{rad}$
$\mathrm{W}=754 \mathrm{~J}$ [Yes, the radians disappear and the $\mathrm{N} \cdot \mathrm{m}$ become joules. Weird, but true!]
15. What is the angular speed of a bit on a 500 W electric drill that provides $6.25 \mathrm{~N} \cdot \mathrm{~m}$ of torque?
16. $P=500 \mathrm{~W} \quad t=6.25 \mathrm{~N} \cdot \mathrm{~m}$
$P=\tau \cdot \omega$
$\omega=\mathrm{P} / \tau$
$\omega=500 \mathrm{~W} / 6.25 \mathrm{~N} \cdot \mathrm{~m}$
$\omega=80 \mathrm{rad} / \mathrm{s}$

Welcome to the Real World Example

13. A hoop (hollow cylinder) and a solid sphere are rolling along a level surface at $4.2 \mathrm{~m} / \mathrm{s}$ when they encounter an incline of 27°. Notice that I'm not saying what the mass or radius of either object is!
a. How far along the incline will the hoop roll before coming to a stop?
b. How far along the incline will the solid sphere roll before coming to a stop?

