PhyzExamples: Rotation

Smooth Operations: Kinematics

1. [Rot UM] How long does it take for a record spinning at 33.3 rpm to rotate through 100 radians?

1. $\omega = 33.3$ rev/min x 2π rad/rev x 1 min/60s $\omega = 3.49$ rad/s $\theta = 100$ rad t = ? $\omega = \theta/t$ $t = \theta/\omega$ t = 100 rad / 3.49 rad/s t = 28.7 s

3. [Rot UAM] A tire on my PhyzVan had an angular acceleration of -5 rad/s². If the wheel was originally turning at 80 rad/s and turned through 500 rad during the deceleration, what was the final speed of the wheel?

3. $\theta = 500 \text{ rad } \omega_0 = 80 \text{ rad/s } \omega = ?$ $\alpha = -5 \text{ rad/s2 } t = ?$ $\omega^2 = \omega_0^2 + 2\alpha\theta$ $\omega = \sqrt{(\omega_0^2 + 2\alpha\theta)}$ $\omega = \sqrt{((80 \text{ rad/s})^2 + 2(-5 \text{ rad/s2})(500 \text{ rad}))}$ $\omega = 37 \text{ rad/s}$

Smooth Operations: Dynamics 1

5. How far must a force of 50 N be placed along a wrench so that a torque of $10 \text{ N} \cdot \text{m}$ can be achieved?

5. F = 50 N $\tau = 10 \text{ N} \cdot \text{m}$ r = ? $\tau = r \times F$ $r = \tau/F$ $r = 10 \text{ N} \cdot \text{m} / 50 \text{ N}$ r = 0.2 m = 20 cm

7. How much torque is needed to angularly accelerate a $3 \cdot \text{kg} \cdot \text{m}^2$ fan blade at 12 rad/s^2 ?

7. I = 3 kg·m² α = 12 rad/s² τ = I α τ = 3 kg·m² · 12 rad/s² $\underline{\tau}$ = 36 N·m [The N·m here are NOT joules!] 2. [Rot UAM] What is the angular acceleration of a compact disc that begins at rest and accelerates to 50 rad/s in 1.5 s?

2. $\theta = ? \quad \omega o = 0 \quad \omega = 50 \text{ rad/s} \quad \alpha = ? \quad t = 1.5 \text{ s}$ $\omega = \omega o + \alpha t$ $\alpha = \omega/t$ $\alpha = 50 \text{ rad/s} / 1.5 \text{ s}$ $\alpha = 33.3 \text{ rad/s}_2$

4. [Rolling] An oil barrel (r = 40 cm) rolls on a level surface at 6 m/s. What is the barrel's angular speed?

4. v = 6m/s r = 0.4 m $\omega = ?$ $v = r\omega$ $\omega = v/r$ $\omega = 6$ m/s / 0.4 m $\omega = 15$ rad/s

6. What is the mass of a basketball whose diameter is 30 cm and whose moment of inertia is $0.0075 \text{ kg} \cdot \text{m}^2$?

6. R = D/2 = 0.15 m I = 0.0075 kg·m² M = ? I = (2/3) MR² [hollow sphere] M = (3/2) I / R² M = (3/2) 0.0075 kg·m² / (0.15 m)² <u>M = 0.5 kg</u>

8. What is the combined rotational inertia of Jenny and the rotating stool she's sitting on if a torque of 20 N·m causes an angular acceleration of 2 rad/s²?

8. $\tau = 20$ N·m $\alpha = 2$ rad/s² $\tau = I\alpha$ $I = \tau/\alpha$ I = 20 N·m / 2 rad/s² I = 10 kg·m²

Smooth Operations: Dynamics 2 & 3

9. What is the angular momentum of a 20-g, 11.8-cm compact disc spinning at 500 rpm?

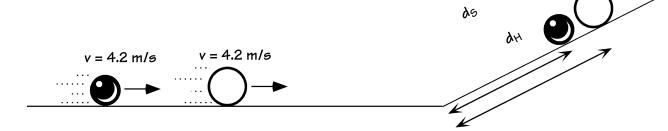
9. m = 20 g = 0.020 kg r = d/2 = 5.9 cm = 0.059 m ω = 500 rev/min x 2 π rad/rev x 1 min/60 s ω = 52.4 rad/s L = I ω = (1/2)mr² · ω L = (1/2) 0.020 kg · (0.059 m)² · 52.4 rad/s <u>L = 0.0018 kg·m²/s</u>

11. To what angular speed did Jearl accelerate the merry-go-round if its rotational inertia was 300 kg·m²?

11. KE = 754 J | = $300 \text{ kg} \cdot \text{m}^2$ KE = $(1/2) \text{I}\omega^2$ $\omega = \sqrt{(2 \text{KE / I})}$ $\omega = \sqrt{(2 \cdot 754 \text{ N} \cdot \text{m} / 300 \text{ kg} \cdot \text{m}^2)}$ $\omega = 2.24 \text{ rad/s}$ 10. How much work does Jearl do on the merry-go-round if he applies a torque of 120 N·m while accelerating it through 2π rad?

10. $\tau = 120$ N·m $\theta = 2\pi$ rad W = $\tau\theta$

 $W = 120 \text{ N} \cdot \text{m} \cdot 2\pi \text{ rad} \\ \underline{W} = 754 \text{ J} \quad [\text{Yes, the radians disappear and} \\ \text{the N} \cdot \text{m become joules. Weird, but true!}]$


12. What is the angular speed of a bit on a 500 W electric drill that provides 6.25 N·m of torque?

12. P = 500 W t = 6.25 N·m $P = \tau \cdot \omega$ $\omega = P/\tau$ $\omega = 500 \text{ W} / 6.25 \text{ N·m}$ $\omega = 80 \text{ rad/s}$

Welcome to the Real World Example

13. A hoop (hollow cylinder) and a solid sphere are rolling along a level surface at 4.2 m/s when they encounter an incline of 27°. *Notice that I'm not saying what the mass or radius of either object is!* a. How far along the incline will the hoop roll before coming to a stop?

b. How far along the incline will the solid sphere roll before coming to a stop?

13a. v = 4.2 m/s θ = 27° l = mr² (hoop) height above level surface KE_{BOT} = PE_{TOP} KE_{LIN} + KE_{ROT} = PE_{TOP} (1/2)mv² + (1/2)lw² = mgh (1/2)mv² + (1/2)(mr²)(v/r)² = mgh (1/2)mv² + (1/2)(mv²) = mgh v² = gh h = v²/g distance along incline d_H = h/sin θ d_H = v²/gsin θ d_H = (4.2 m/s)² / 9.8 m/s² sin27° d_H = 3.97 m 13b. v = 4.2 m/s θ = 27° l = (2/5)mr² (SS) height above level surface KE_{BOT} = PE_{TOP} KE_{LIN} + KE_{ROT} = PE_{TOP} (1/2)mv² + (1/2)lw² = mgh (1/2)mv² + (1/2)(2/5)(mr²)(v/r)² = mgh (1/2)mv² + (2/10)(mv²) = mgh (7/10)v² = gh h = 7v²/10g distance along incline d₅ = h/sin θ d₅ = 7v²/10gsin θ d₅ = 7(4.2 m/s)² / 10.9.8 m/s² sin27° d₅ = 2.78 m

Did you expect the same answer as for the hoop?