NhyzExamples: Jmpulse \& Momentum

Physical Quantities•Symbols• Units•Briel Definitions

Momentum • $p \bullet \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, $\mathrm{N} \cdot \mathrm{s} \bullet$ "Quantity of motion," "Inertia in motion." A measure of how hard it is to stop a body. The product of a body's mass and speed.
Impulse $\bullet \Delta p \bullet \mathrm{~N} \cdot \mathrm{~s}, \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bullet$ Change in momentum. (Not the rate of change in momentum, just the change in momentum.)
Force $\bullet F \bullet \mathrm{~N} \cdot$ The rate of change in momentum.

Equations

$p=m v \cdot$ momentum $=$ mass \cdot speed (or velocity)
$\Delta p=m \Delta v \cdot$ impulse $=$ mass \cdot change in speed
$F=\Delta p / \Delta t \cdot$ force $=$ impulse $/$ time interval [Newton's second law, original form]
$F \Delta t=m \Delta v \cdot$ force \cdot time interval $=$ mass \cdot change in velocity (or speed)
$p^{\prime}=p \cdot$ momentum after an event $=$ momentum before event [conservation of momentum]
$m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=m_{1} v_{1}+m_{2} v_{2} \cdot$ conservation of momentum applied to two bodies in one dimension.

Smooth Operations Examples

1. What is the momentum of a 4 kg object moving with a velocity of $7 \mathrm{~m} / \mathrm{s}$?
2. $m=4 \mathrm{~kg} \quad v=7 \mathrm{~m} / \mathrm{s} \quad p=$?
$p=m v$
$p=4 \mathrm{~kg} \cdot 7 \mathrm{~m} / \mathrm{s}$
$p=28 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
3. How much force causes a 500 kg car to accelerate from rest to a speed of $25 \mathrm{~m} / \mathrm{s}$ in 10 s ?

$$
\begin{aligned}
& \text { 3. } m=500 \mathrm{~kg} \Delta v=25 \mathrm{~m} / \mathrm{s} \Delta t=10 \mathrm{~s} \quad F=? \\
& F \Delta t=m \Delta v \\
& F=m \Delta \mathrm{v} / \Delta t \\
& F=(500 \mathrm{~kg} \cdot 25 \mathrm{~m} / \mathrm{s}) / 10 \mathrm{~s} \\
& F=1250 \mathrm{~N}
\end{aligned}
$$

5. If a $100-\mathrm{kg}$ passenger got into the car in Problem 3 above, how much time would the vehicle need to get from 0 to $32 \mathrm{~m} / \mathrm{s}$?
$5 . \mathrm{m}=600 \mathrm{~kg} \quad \Delta v=32 \mathrm{~m} / \mathrm{s} \quad \mathrm{F}=1250 \mathrm{~N}$
$\Delta t=$?
$\mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta v$
$\Delta t=m \Delta v / F$
$\Delta \mathrm{t}=(600 \mathrm{~kg} \cdot 32 \mathrm{~m} / \mathrm{s}) / 1250 \mathrm{~s}$
$t=15 \mathrm{~s}$
6. What is the speed of a 9 kg object whose momentum is $54 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \text { 2. } m=9 \mathrm{~kg} \quad p=54 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \quad v=? \\
& p=m v \\
& v=p / \mathrm{m} \\
& v=54 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} / 9 \mathrm{~kg} \\
& v=6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. A rocket is propelled forward by a 10 N force as exhaust gas is expelled out the back at $100 \mathrm{~m} / \mathrm{s}$. What is the mass flow rate of the exhaust?

$$
\begin{aligned}
& \text { 4. } \Delta v=100 \mathrm{~m} / \mathrm{s} \quad \mathrm{~F}=10 \mathrm{~N} \mathrm{~m} / \Delta \mathrm{t}=\text { ? } \\
& \mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta \mathrm{v} \Rightarrow>\mathrm{m} / \Delta \mathrm{t}=\mathrm{F} / \Delta \mathrm{v} \\
& \mathrm{~m} / \Delta \mathrm{t}=10 \mathrm{~N} / 100 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~m} / \Delta \mathrm{t}=0.1 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

6. An air-powered rocket whose mass is 0.10 kg accelerated from rest by a force of 47 N . If the propelling force acts for 0.062 s , what is the rocket's launch speed?
7. $\mathrm{m}=0.10 \mathrm{~kg} \Delta v=? \mathrm{~m} / \mathrm{s}$

$$
F=47 N \quad \Delta t=0.062 \mathrm{~s}
$$

$F \Delta t=m \Delta v$
$\Delta v=F \cdot \Delta t / m$
$\Delta v=47 \mathrm{~N} \cdot 0.062 \mathrm{~s} / 0.1 \mathrm{~kg}$
$\Delta v=29 \mathrm{~m} / \mathrm{s}$

