Conservation of Momentum
 universal Solution Method Examples

Equations

$p=p^{\prime} \cdot$ momentum before an event $=$ momentum after event [conservation of momentum]
$p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime} \bullet$ momentum of two objects before an event $=$ momentum of two objects after event [conservation of momentum]
$m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \cdot$ conservation of momentum applied to two bodies in one dimension.

Univensal Solution Method Examples

1. William Tell fires a 0.1 kg arrow at a 1.2 kg block of wood on his son's head. If the arrow hits the block at $50 \mathrm{~m} / \mathrm{s}$ and sticks into it and the son's head is frictionless, how fast will the arrow/block combination travel directly thereafter?

LIST:

$$
m_{1}=0.1 \mathrm{~kg} \mathrm{~m}_{2}=1.2 \mathrm{~kg} \mathrm{v}_{1}=50 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=0
$$

DON'T THINK:

$$
p=p^{\prime}
$$

$$
p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

THINK: $\quad v_{2}=0$, Inelastic collision: final speeds are the same: $v_{1}{ }^{\prime}=v_{2}{ }^{\prime}=v^{\prime}$
APPLY: $\quad m_{1} v_{1}+0=m_{1} v^{\prime}+m_{2} v^{\prime}$

$$
m_{1} v_{1}=\left(m_{1}+m_{2}\right) v^{\prime}
$$

SOLVE $v^{\prime}: \quad v^{\prime}=m_{1} v_{1} /\left(m_{1}+m_{2}\right)$
$v^{\prime}=(0.1 \mathrm{~kg} \cdot 50 \mathrm{~m} / \mathrm{s}) /(0.1 \mathrm{~kg}+1.2 \mathrm{~kg})$
$v^{\prime}=3.8 \mathrm{~m} / \mathrm{s}$
2. A 2 kg pumpkin is bowled at $6 \mathrm{~m} / \mathrm{s}$ across a frozen pond $(\mu=0)$. Shortly after its release, an explosion within causes the pumpkin to separate into a 1.5 kg piece and a 0.5 kg piece. If the 1.5 kg piece continues forward at $3 \mathrm{~m} / \mathrm{s}$, what is the final speed of the 0.5 kg piece?
LIST: $\quad m_{1}=1.5 \mathrm{~kg} \quad m_{2}=0.5 \mathrm{~kg} \quad v_{1}=v_{2}=6 \mathrm{~m} / \mathrm{s} \quad v_{1}^{\prime}=3 \mathrm{~m} / \mathrm{s} \quad v_{2}{ }^{\prime}=?$
DON'T THINK: $\quad p=p^{\prime}$

$$
p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

THINK: \quad Explosion-initial speeds are equal: $v_{1}=v_{2}=v$
APPLY: $\quad \begin{aligned} & m_{1} v+m_{2} v=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}, \\ & \left(m_{1}+m_{2}\right) v=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}\end{aligned}$
SOLVE $v_{2}^{\prime}: \quad m_{2} v_{2}{ }^{\prime}=\left(m_{1}+m_{2}\right) v-m_{1} v_{1}^{\prime}$
$v_{2}^{\prime}=\left(\left(m_{1}+m_{2}\right) v-m_{1} v_{1}^{\prime}\right) / m_{2}$
$v_{2}^{\prime}=((1.5 \mathrm{~kg}+0.5 \mathrm{~kg}) 6 \mathrm{~m} / \mathrm{s}-1.5 \mathrm{~kg} \cdot 3 \mathrm{~m} / \mathrm{s}) /(0.5 \mathrm{~kg})$
$\underline{v_{2}^{\prime}}=15 \mathrm{~m} / \mathrm{s}$
3. A dynamics cart collides and sticks to a cart initially at rest. The moving cart had a mass of 1.25 kg and stationary cart had a mass of 0.75 kg . After the collision, the two carts move at $0.58 \mathrm{~m} / \mathrm{s}$. What was the initial speed of the moving cart?
LIST:

$$
m_{1}=1.25 \mathrm{~kg} \quad m_{2}=0.75 \mathrm{~kg} \quad v_{1}=? \quad v_{2}=0 \quad v^{\prime}=0.58 \mathrm{~m} / \mathrm{s}
$$

DON'T THINK: $\quad p=p^{\prime}$

$$
\begin{aligned}
& p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime} \\
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
\end{aligned}
$$

THINK: $\quad v_{2}=O$, Inelastic Collision-final speeds are equal: $v_{1}^{\prime}=v_{2}{ }^{\prime}=v^{\prime}$
APPLY: $\quad m_{1} v_{1}+0=m_{1} v^{\prime}+m_{2} v^{\prime}$

$$
m_{1} v_{1}=v^{\prime}\left(m_{1}+m_{2}\right)
$$

SOLVE $v_{1}: \quad v_{1}=v^{\prime}\left(m_{1}+m_{2}\right) / m_{1}$
$v_{1}=0.58 \mathrm{~m} / \mathrm{s}(1.25 \mathrm{~kg}+0.75 \mathrm{~kg}) / 1.25 \mathrm{~kg}$
$v_{1}=0.93 \mathrm{~m} / \mathrm{s}$
4. Snoopy rides a wagon at $4.3 \mathrm{~m} / \mathrm{s}$ along a level sidewalk and then jumps forward off the wagon. Snoopy's mass is 2.4 kg and the wagon comes to a complete stop when Snoopy jumps forward. If Snoopy flies through the air at $6.7 \mathrm{~m} / \mathrm{s}$, what was the mass of the wagon?

LIST:

$$
m_{1}=2.4 \mathrm{~kg} \quad m_{2}=? \quad v=4.3 \mathrm{~m} / \mathrm{s} \quad v_{1}^{\prime}=6.7 \mathrm{~m} / \mathrm{s} \quad v_{2}^{\prime}=0
$$

DON'TTHINK:

$$
p=p^{\prime}
$$

$$
p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

THINK: $\quad v_{2}{ }^{\prime}=0$, Explosion-initial speeds are the same: $v_{1}=v_{2}=v$
APPLY: $\quad m_{1} v+m_{2} v=m_{1} v_{1}^{\prime}+0$
SOLVE $m_{2}: \quad m_{2} v=m_{1} v_{1}^{\prime}-m_{1} v$
$m_{2} v=m_{1}\left(v_{1}^{\prime}-v\right)$
$m_{2}=m_{1}\left(v_{1}^{\prime}-v\right) / v$
$\mathrm{m}_{2}=2.4 \mathrm{~kg}(6.7 \mathrm{~m} / \mathrm{s}-4.3 \mathrm{~m} / \mathrm{s}) / 4.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{m}_{2}=1.4 \mathrm{~kg}$

