PhyzExamples: UCM & Gravity

Physical Quantities • Symbols • Units • Brief Definitions

Radius • R or $r \cdot m$ • Distance from the center of the circle to the center of the object in circular motion. If motion is circular, radius is constant.

Tangential Velocity • v / **Tangential Speed** • $v \cdot m/s$ • Velocity or speed of an object in circular motion. In uniform circular motion, tangential *speed* is constant while tangential *velocity* is always changing.

Centripetal Force • F_C • N • Force on an object in circular motion directed radially inward (toward the center of the circle).

Gravitational Force • F_G or $W \cdot N \cdot Attractive force between two objects with mass (due only to their mass).$

Universal Gravitation Constant • $G \cdot N \cdot m^2/kg^2 \cdot 6.67 \times 10^{-11} N \cdot m^2/kg^2$

Equations

 $F_C = mv^2/R$ • centripetal force = mass · tangential speed squared / radius

 $F_G = GMm/R^2 \bullet$ (Newton's Universal Gravitation) • gravitational force = universal gravitation constant • mass of one object • mass of the other object / radius squared

Smooth Operations Examples

1. What is the force needed to keep a 0.50-kg object moving in a 0.60-m circle at 2.8 m/s?

1. m = 0.50 kg R = 0.60 m v = 2.8 m/s F_c = ? F_c = mv²/R F_c = 0.50 kg · (2.8 m/s)² / 0.60 m F_c = 6.5 N 2. What is the mass of an object moving at 4 m/s in a circle having a 3-m radius and experiencing a 24-N centripetal force?

2. v = 4 m/s R = 3 m F_c = 24 N m = ? F_c = mv^2/R m = F_c R/ v^2 m = 24 N · 3 m / (4 m/s)² <u>m = 4.5 kg</u>

4. How far is 80-kg Felix from 60-kg Bertha if they experience an attractive gravitational force of 100 nN?

4. $M = 80 \text{ kg} \text{ m} = 60 \text{ kg} \text{ F}_G = 100 \times 10^{-9} \text{ N}$ R = ? $F_G = GMm/R^2$ $R = \sqrt{(GMm/F_G)}$ $R = \sqrt{(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \cdot 80 \text{ kg} \cdot 60 \text{ kg} / 100 \times 10^{-9} \text{ N})}$ R = 1.79 m

3. What is the gravitational force of the Earth on the moon?

[Numerical values found on Solar System Reference sheet]

3. M = 5.98 x 10²⁴ kg m = 7.36 x 10²² kg R = 3.82 x 10⁸ m $F_G = GMm/R^2$ $F_G = 6.67 x 10^{-11} N \cdot m^2/kg^2 \cdot 5.98 x 10^{24} kg \cdot 7.36 x 10^{22} kg / (3.82 x 10^8 m)^2$ $F_G = 2.0 x 10^{20} N$

0	RBITAL CHA	RACTERISTIC	S	PLA	NETARY CH.	ARACTERIST	ICS
Ra	dius	Period	Speed	Mass	Radius	Density	Gravity
)m*	AU	years	m/s	E+24kg*	$E+6m^*$	kg/m^3	m/s^2
.9	0.39	0.241	47,900	0.334	2.44	5,600	
8(0.72	0.615	35,000	4.87	6.1	5,200	
50	1.00	1.00	29,800	5.98	6.4	5,520	9.78
28	1.52	1.88	24,100	0.640	3.4	3,950	
78	5.19	11.9	13,100	1902	72	1,310	
30	9.53	30	9,640	569	60	704	
70	19.1	84	6,810	86.7	25.9	1,210	
00	30.0	165	5,430	103	24.8	1,670	

ODBITAL CHADACTEDICTICS

E+S

S

PhyzReference: Solar System Information

<i>Vote: "E" means "times</i>	10 to the," so
1.9E+9m is 57.9 times 10	to the 9th meters

45

28

14

Moon (Luna) Sun (Sol)

the planets, the Sun, and the Moon. Assignment: Calculate gravity for

Earth-Moon Distance: 3.82E+8m

The Book of Phyz © Dean Baird. All rights reserved. Source: Fundamentals of Physics by Halliday and Resnick, © John Wiley & Sons

SOL & LUNA: THE SUN AND THE MOON

Mass	Radius	Density	Gravity
kg	т	kg/m^3	m/s^2
1.99E+30	6.96E+8	1,410	
7.36E+22	1.74E+6	3,340	

Mercury Neptune Uranus Saturn Jupiter Venus Earth Mars

2