PhyzExamples: Fonces

Physical Quantities•Symbols• Units•Brief Definitions

Weight • $W \bullet \mathrm{~N} \bullet$ Attractive force between two bodies; gravitational force; "heaviness"; acts along a line connecting centers of mass of the bodies.
Normal $\bullet N \bullet \mathrm{~N} \bullet$ Force of compression between two objects pressed together; acts perpendicular to the surface of compression.
Tension $\bullet T \bullet \mathrm{~N} \bullet$ Force transmitted through a cord; can act only in direction of cord. Friction $\bullet f \bullet \mathrm{~N} \bullet$ Force that opposes slipping between two surfaces in contact; acts parallel to surface in direction opposed to slipping.

Coefficient of friction $\bullet \mu \bullet$ unitless • Measure of surface-to-surface roughness; depends on characteristics of both surfaces; different values for static friction and kinetic friction.
Drag • $D \cdot \mathrm{~N} \bullet$ Force that opposes motion of a body through a fluid (liquid or gas) or a fluid around a body; "air friction"; acts antiparallel to body's velocity through fluid or fluid's velocity around body.

Aerodynamic coefficient $\bullet k \bullet \mathrm{~kg} / \mathrm{m} \bullet$ A quantity that accounts for fluid density, surface geometry, and cross-sectional surface area.
Terminal speed $\bullet v_{T} \bullet \mathrm{~m} / \mathrm{s} \bullet$ The speed at which a body falls through a fluid when the upward drag force is equal in magnitude to the downward gravitational force.

Equations

$W=m g$ • weight $=$ mass \cdot acceleration due to gravity
$f_{s}(\max)=\mu_{s} N \cdot$ maximum static friction $=$ coefficient of static friction \cdot normal
$f_{k}=\mu_{k} N \cdot$ kinetic friction $=$ coefficient of kinetic friction \cdot normal
$D=k v^{2} \cdot$ drag $=$ aerodynamic coefficient \cdot speed squared
$D=W \cdot$ drag = weight [true only when an object is falling at terminal speed]

Smooth Operations Examples

1. How much force is needed to push a 250 N crate across a floor if the coefficient of friction is 0.4 ?
2. $W=250 N \quad \mu=0.4 \quad f=$?
$f=\mu N$
$\mathrm{N}=\mathrm{W}$ (level surface, no vertical
acceleration)
$\mathrm{f}=0.4 \cdot 250 \mathrm{~N}$
$\mathrm{f}=100 \mathrm{~N}$
3. What is the speed of a ball moving through air ($k=0.2 \mathrm{~kg} / \mathrm{m}$) that encounters 200 N of drag?
4. $\mathrm{k}=0.2 \mathrm{~kg} / \mathrm{m} \quad \mathrm{D}=200 \mathrm{~N} \quad \mathrm{v}=$?
$D=k v^{2}$
$v=$ (D/k)
$v=(200 \mathrm{~N} / 0.2 \mathrm{~kg} / \mathrm{m})$
$v=32 \mathrm{~m} / \mathrm{s}$

Welcome to the Real World Examples

3. A magician pulls a tablecloth out from under a 325 g plate resting on a table. If the tablecloth spent 0.083 s under the plate while sliding underneath it and the plate slid 1 cm during the process, what was the coefficient of kinetic friction between the cloth and the plate?

4. $\mathrm{m}=325 \mathrm{~g}=0.325 \mathrm{~kg} \quad \mathrm{t}=0.083 \mathrm{~s} \quad \mathrm{x}=1 \mathrm{~cm}=0.01 \mathrm{~m} \quad \mathrm{v}_{O}=0 \quad \mathrm{v}=? \quad \mathrm{a}=? \quad \mu=$???
$f=\mu N$
$\mu=f / N$
$f=m a$
$a: \quad x=v_{O} t+{ }^{1} / 2 a t^{2}$
$a=2 x / t^{2}$
$f=2 m x / t^{2}$
$\mathrm{N}=\mathrm{W}$ (level surface, no vertical acceleration)
$W=m g$
$\mu=2 \mathrm{mx} / \mathrm{t}^{2} / \mathrm{mg}$
$\mu=2 x / g t^{2}$
$\mu=2 \cdot 0.01 \mathrm{~m} / 9.8 \mathrm{~m} / \mathrm{s}^{2}(0.083 \mathrm{~s})^{2}$
$\mu=0.30$
5. A typical parachute gives a 180 lb person a terminal speed of 20 mph . Suppose a skydiver rescues another who has lost consciousness in free fall. What would be the terminal speed of two people sharing one parachute?

20 mph

4. $\mathrm{m}=180 \mathrm{lb} / 2.2 \mathrm{lb} / \mathrm{kg}=82 \mathrm{~kg} v_{1}=20 \mathrm{mph} \times 1609 \mathrm{~m} / \mathrm{mi} / 3600 \mathrm{~s} / \mathrm{hr}=8.9 \mathrm{~m} / \mathrm{s}$
$v_{2}=$???
D $=2 \mathrm{~W}$
$k v_{2}{ }^{2}=2 \mathrm{mg}$
$v_{2}=(2 \mathrm{mg} / \mathrm{k})$
k: $D=W$

$$
\mathrm{kv}_{1}^{2}=\mathrm{mg}
$$

$$
\mathrm{k}=\mathrm{mg} / \mathrm{v}_{1}^{2}
$$

$$
\begin{aligned}
& v_{2}=\left(2 \mathrm{mg} /\left[\mathrm{mg} / \mathrm{v}_{1}^{2}\right]\right) \\
& v_{2}=\left(2 v_{1}^{2}\right)=v_{1} 2 \\
& v_{2}=8.9 \mathrm{~m} / \mathrm{s} \cdot 2 \\
& v_{2}=12.6 \mathrm{~m} / \mathrm{s}=28 \mathrm{mph}
\end{aligned}
$$

