PhyzExamples: Waves

Physical Quantities•Symbols• Units•Briel Definitions

Wavelength • $\lambda \bullet$ meter: $m \bullet$ The distance through which a complete cycle of a wave is observed (e.g., from one crest to the next crest).
Amplitude $\bullet A$ or $x_{\max } \bullet$ meter: $\mathrm{m} \bullet$ The distance between the equilibrium position of a medium and the top of a crest or bottom of a trough of a wave passing through it. Indicative of the energy associated with the wave.
Frequency • f or $v(\mathrm{nu}) \bullet$ hertz: $\mathrm{Hz} \bullet$ The rate at which a source or observer of waves oscillates. Related to the rate at which a source transmits energy to an observer.
Period • T • seconds: s - The time required for a source or observer of waves to oscillate through one cycle.
Speed • $v_{w} \bullet$ meters per second: $\mathrm{m} / \mathrm{s} \bullet$ The rate at which a wave passes or propagates through a medium or through space.

Equations

$f=1 / T \bullet$ frequency $=1 /$ period
$v_{w}=f \lambda \cdot$ The Wave Equation \cdot wave speed $=$ frequency \cdot wavelength
$f_{\text {beat }}=f_{2}-f_{1} \bullet$ beat frequency $=$ higher frequency - lower frequency

Smooth Operations Examples

1. Ripples on a pond pass a rock at a frequency of 5.0 Hz ; there is a distance of 6.0 cm between the wave crests. What is the speed of the waves?
2. $f=5.0 \mathrm{~Hz} \quad \lambda=0.060 \mathrm{~m} \quad v=$?
$v=f \lambda$
$v=5.0 \mathrm{~Hz} \cdot 0.060 \mathrm{~m}$
$v=0.30 \mathrm{~m} / \mathrm{s}$
3. Waves in a wave machine travel at $60 \mathrm{~cm} / \mathrm{s}$. If one end of the wave sticks is wiggled once every two seconds, what wavelength will be produced?
4. $v=0.60 \mathrm{~m} / \mathrm{s} \quad T=2 \mathrm{~s} \quad(f=1 / T=0.5 \mathrm{~Hz}) \quad \lambda=$?
$v=f \lambda \Rightarrow \lambda=v / f$
$\lambda=0.60 \mathrm{~m} / \mathrm{s} / 0.5 \mathrm{~Hz}$
$\lambda=1.2 \mathrm{~m}$
