PhyzExamples: Simple Harmonic Motion

Physical Quantities•Symlols• Units•Brief Definitions
Restoring Force $\bullet F \bullet$ newton: $\mathrm{N} \bullet$ Force acting on a body displaced from a position of stable equilibrium. It acts in a direction so as to return (restore) the body to equilibrium. Force Constant or Spring Constant $\bullet k \bullet$ newton per meter: N/m • A measure of the stiffness of an elastic object, typically a spring. The quantity of force required to stretch the object by a particular distance.
Elastic Potential Energy • PE • joule: J• Energy stored in a system when a body is displaced from its position of stable equilibrium. For example, a stretched or compressed spring, a stretched rubber band, a stretched archer's bow.
Period • $T \bullet$ seconds: $\mathrm{s} \bullet$ The time required for one cycle of a periodic motion.

Equations

$F=k x \bullet$ Hooke's Law • restoring force $=$ force constant \cdot distance from equilibrium.
PE $=1 / 2 k x^{2} \cdot$ Elastic Potential Energy $=$ one half \cdot force constant \cdot distance from equilibrium squared.
$T=2 \pi \sqrt{ }(-x / a) \cdot$ General SHM • period $=$ two $\cdot p i \cdot$ square root of negative the distance from equilibrium / acceleration.
$T=2 \pi \sqrt{ }(\mathrm{~m} / \mathrm{k}) \cdot$ Spring-Mass Oscillator • period $=$ two $\cdot \mathrm{pi} \cdot$ square root of the oscillating mass / force constant.
$T=2 \pi \sqrt{ }(L / g) \cdot$ Simple Pendulum \cdot period $=$ two $\cdot p i \cdot$ square root of the length of the pendulum / gravitational acceleration in the region.

Smooth Openations Examples

1. What is the force constant of a spring that is compressed 25 mm under a load of 1800 N?
2. $x=0.025 \mathrm{~m} \quad \mathrm{~F}=1800 \mathrm{~N} \quad \mathrm{k}=$?
$\mathrm{F}=\mathrm{kx}$
$\mathrm{k}=\mathrm{F} / \mathrm{x}$
$\mathrm{k}=1800 \mathrm{~N} / 0.025 \mathrm{~m}$
$\mathrm{k}=72,000 \mathrm{~N} / \mathrm{m}$
3. What is the mass of an object that oscillates 10 times in 42 s at the end of a $56 \mathrm{~N} / \mathrm{m}$ spring?
4. $T=42 \mathrm{~s} / 10=4.2 \mathrm{~s} \quad \mathrm{k}=56 \mathrm{~N} / \mathrm{m} \quad \mathrm{m}=$?
$T=2 \quad(\mathrm{~m} / \mathrm{k}) \quad \mathrm{T}^{2}=4^{2} \mathrm{~m} / \mathrm{k}$
$\mathrm{m}=\mathrm{T}^{2} \mathrm{k} / 4^{2}$
$\mathrm{m}=(4.2 \mathrm{~s})^{2} .56 \mathrm{~N} / \mathrm{m} / 4^{2}$
$\mathrm{m}=25 \mathrm{~kg}$
5. How far could a $72 \mathrm{kN} / \mathrm{m}$ spring be stretched if 36 kJ of work were done to stretch it?
6. $\mathrm{k}=72 \times 10^{3} \mathrm{~N} / \mathrm{m} \quad \mathrm{PE}=\mathrm{W}=36 \times 10^{3} \mathrm{~J}$
$P E=(1 / 2) k x^{2}$
$x=(2 P E / k)$
$x=\left(2.36 \times 10^{3} \mathrm{~J} / 72 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)$
$\mathrm{R}=1 \mathrm{~m}$
7. What is the acceleration of gravity on a planet where a 0.62 m pendulum has a period of 1.3 s ?
8. $T=1.3 \mathrm{~s} \quad \mathrm{~L}=0.62 \mathrm{~m} \quad \mathrm{~g}=$?
$T=2 \quad(\mathrm{~L} / \mathrm{g}) \quad \mathrm{T}^{2}=4^{2} \mathrm{~L} / \mathrm{g}$
$g=4^{2} \mathrm{~L} / \mathrm{T}^{2}$
$g=4^{2} \cdot 0.62 \mathrm{~m} /(1.3 \mathrm{~s})^{2}$
$g=14 \mathrm{~m} / \mathrm{s}^{2}$

Gruesome Welcome to the Real World Example

5. A clown is fired from a spring-loaded cannon as shown below. At the apex of her flight, the clown attaches herself to a trapeze. The force constant of the cannon's spring is $1250 \mathrm{~N} / \mathrm{m}$ and the spring is compressed 3.75 m ; the cannon makes an angle of 45° with the horizontal floor. The support ropes for the trapeze are 10.0 m in length. The clown's mass is 48 kg .
```
a. At what horizontal distance from the launch point does the clown reach the apex of her flight?
\(d=R / 2\)
\(d=v_{0}{ }^{2} / 2 g\)
\(K E_{\text {launch }}=P E_{\text {stored }}\)
\((1 / 2) m v_{o}{ }^{2}=(1 / 2) k x^{2}\)
\(v_{0}{ }^{2}=k x^{2} / m\)
\(d=k x^{2} / 2 \mathrm{mg}=1250 \mathrm{~N} / \mathrm{m}(3.75 \mathrm{~m})^{2} / 2(48 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\)
\(d=18.7 \mathrm{~m}\)
```

b. How high above the floor is the apex of the flight?
$y=$? $v_{y O}=v_{0} \sin \theta=x \sin \theta(\mathrm{k} / \mathrm{m})=3.75 \mathrm{~m} \cdot \sin 45^{\circ}(1250 \mathrm{~N} / \mathrm{m} / 48 \mathrm{~kg})=13.5 \mathrm{~m} / \mathrm{s} \quad v_{y}=0$
$a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{t}=$?
$v_{y}{ }^{2}=v_{y o}{ }^{2}+2 a y$
$\mathrm{y}=-\mathrm{v}_{\mathrm{yo}}{ }^{2} / 2 a=-(13.5 \mathrm{~m} / \mathrm{s})^{2} / 2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$y=9.34 \mathrm{~m}$
c. If the trapeze bar has a mass of 10 kg , how high above the equilibrium position will the bar rise when the clown attaches herself to it?
$P E_{\text {high }}=K E_{\text {low }}$
$m g h=(1 / 2) m v_{x}{ }^{2}$
Find v_{x}^{\prime} using cons of mom (inelastic collision) $\quad p^{\prime}=p \quad m v_{x}^{\prime}+m_{t} v_{x}^{\prime}=m v_{x} \quad\left(m+m_{t}\right) v_{x}^{\prime}=m v_{x}$
$v_{x}^{\prime}=m v_{x} /\left(m+m_{t}\right)$
$v_{x}=v_{0} \cos \theta=x \cos \theta(\mathrm{k} / \mathrm{m})$
$v_{x}^{\prime}=m x \cos \theta(\mathrm{k} / \mathrm{m}) /\left(\mathrm{m}+\mathrm{m}_{\mathrm{t}}\right)=48 \mathrm{~kg}(3.75 \mathrm{~m})\left(\cos 45^{\circ}\right)(1250 \mathrm{~N} / \mathrm{m} / 48 \mathrm{~kg}) /(48 \mathrm{~kg}+10 \mathrm{~kg})$
$v_{x}^{\prime}=11 \mathrm{~m} / \mathrm{s}$
$h=v_{x}^{\prime 2} / 2 g=(11 \mathrm{~m} / \mathrm{s})^{2} / 2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{h}=6.4 \mathrm{~m}$
d. With what period will the clown swing from her perch?
$T=2 \quad(\mathrm{~L} / \mathrm{g})=2 \quad\left(10.0 \mathrm{~m} / 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$T=6.3 \mathrm{~s}$

