NhyzExamples: Advanced Waves

Physical Quantities•Symbols•Units• Brief Definitions

Wavelength • $\lambda \bullet$ meter: $m \bullet$ The distance through which a complete cycle of a wave is observed (e.g. from one crest to the next crest).
Amplitude $\bullet A$ or $x_{\max } \bullet$ meter: $\mathrm{m} \bullet$ The distance between the equilibrium position of a medium and the top of a crest or bottom of a trough of a wave passing through it. Indicative of the energy associated with the wave.
Frequency •for $v(\mathrm{nu}) \bullet$ hertz: $\mathrm{Hz} \bullet$ The rate at which a source or observer of waves oscillates. Related to the rate at which a source transmits energy to an observer.
Period • $T \bullet$ seconds: $\mathrm{s} \bullet$ The time required for a source or observer of waves to oscillate through one cycle. Be careful: T also represents tension.
Speed • $v_{w} \bullet$ meters per second: $\mathrm{m} / \mathrm{s} \bullet$ The rate at which a wave passes or propagates through a medium or through space.

Equations

$v_{w}=f \lambda \cdot$ The Wave Equation \cdot wave speed $=$ frequency \cdot wavelength
$f_{\text {obs }}=f_{s}\left[\left(v_{w}-v_{o b s}\right) /\left(v_{w}-v_{s}\right)\right] \cdot$ The Doppler Effect \bullet observed frequency $=$ source frequency \cdot the difference of observer speed from wave speed / the difference of source speed from wave speed $v_{w}=\sqrt{ }(T L / m) \cdot$ speed of a wave in a stretched cord $=$ square root of (cord tension \cdot cord length $/$ cord mass)
$\lambda_{n}=2 L / n \bullet$ Fixed Ends Resonance \bullet wavelength of the nth harmonic $=$ two \cdot the length of the oscillating medium / the harmonic number
$f_{n}=n v_{w} / 2 L \bullet$ Fixed Ends Resonance \bullet frequency of the nth harmonic $=$ the harmonic number \cdot wave speed / two • length of the oscillating medium

Smooth Operations Examples

1. Ripples on a pond pass a rock at a frequency of 5 Hz ; there is a distance of 3 cm between the wave crests. What is the speed of the waves?
2. $f=5 \mathrm{~Hz} \quad \lambda=0.03 \mathrm{~m} \quad v=$?
$v=f \lambda$
$v=5 \mathrm{~Hz} \cdot 0.03 \mathrm{~m}$
$v=0.15 \mathrm{~m} / \mathrm{s}$
3. A train whistle blows at 750 Hz as it approaches a railroad crossing. If the train is moving at $25 \mathrm{~m} / \mathrm{s}$, what is the frequency heard by an observer standing near the crossing? The speed of sound in air at room temperature is $343 \mathrm{~m} / \mathrm{s}$.
4. $f_{s}=750 \mathrm{~Hz} \quad v_{s}=25 \mathrm{~m} / \mathrm{s} \quad v_{o b s}=0 \quad f_{o b s}=$? $f_{o b s}=f_{s}\left[\left(v_{w}-v_{o b s}\right) /\left(v_{w}-v_{s}\right)\right]$
$f_{\text {obs }}=750 \mathrm{~Hz}[(343 \mathrm{~m} / \mathrm{s}) /(343 \mathrm{~m} / \mathrm{s}-25 \mathrm{~m} / \mathrm{s})]$
$\mathrm{f}_{\text {obs }}=810 \mathrm{~Hz}$
5. Waves in a wave machine travel at $60 \mathrm{~cm} / \mathrm{s}$. If one end of the wave sticks is wiggled once every two seconds, what wavelength will be produced?
6. $v=0.60 \mathrm{~m} / \mathrm{s} \quad T=2 \mathrm{~s} \quad(f=1 / T=0.5 \mathrm{hz}) \quad \lambda=$?
$v=f \lambda \quad \lambda=v / f$
$\lambda=0.60 \mathrm{~m} / \mathrm{s} / 0.5 \mathrm{~Hz}$
$\lambda=1.2 \mathrm{~m}$
7. The 400 Hz horn of a stationary car is heard as 380 Hz by a car moving away from it. How fast is the moving car traveling?
8. $f_{s}=400 \mathrm{~Hz} \quad f_{\text {obs }}=380 \mathrm{~Hz} \quad v_{s}=0 \quad v_{\text {obs }}=$?
$f_{o b s}=f_{s}\left[\left(v_{w}-v_{o b s}\right) /\left(v_{w}-v_{s}\right)\right]$
$f_{o b s} / f_{s}=\left(v_{w}-v_{o b s}\right) /\left(v_{w}\right)$
$f_{o b s} v_{w} / f_{s}=v_{w}-v_{o b s}$
$f_{o b s} v_{w} / f_{s}-v_{w}=-v_{o b s}$
$v_{\text {obs }}=v_{w}-\left(f_{o b s} v_{w} / f_{s}\right)$
$v_{\text {obs }}=343 \mathrm{~m} / \mathrm{s}-(380 \mathrm{~Hz} \cdot 343 \mathrm{~m} / \mathrm{s} / 400 \mathrm{~Hz})$
$\underline{v}_{\text {obs }}=+17 \mathrm{~m} / \mathrm{s}=17 \mathrm{~m} / \mathrm{s}$ away from horn
9. A wave travels $100 \mathrm{~m} / \mathrm{s}$ in an $80 \mathrm{~cm}, 30 \mathrm{~g}$ cord. What is the tension in the cord?
$5 . v=100 \mathrm{~m} / \mathrm{s} \mathrm{L}=0.8 \mathrm{~m} \mathrm{~m}=0.03 \mathrm{~kg} \quad \mathrm{~T}=$?
$v=(\mathrm{TL} / \mathrm{m})$
$T=v^{2} \mathrm{~m} / \mathrm{L}$
$T=(100 \mathrm{~m} / \mathrm{s})^{2} \cdot 0.03 \mathrm{~kg} / 0.8 \mathrm{~m}$
$\underline{T}=375 \mathrm{~N}$
10. A $25 \mathrm{~g}, 1.2 \mathrm{~m}$ string is under 200 N of tension. Determine the wavelength and frequency of the fundamental.
11. $\mathrm{m}=0.025 \mathrm{~kg} \mathrm{~L}=1.2 \mathrm{~m} \quad \mathrm{~T}=200 \mathrm{~N}$
$\lambda=$? $\mathrm{f}=$? $\mathrm{n}=1$
$\lambda=2 \mathrm{~L} / \mathrm{n}$
$\lambda=2 \cdot 1.2 \mathrm{~m} / 1=2.4 \mathrm{~m}=\lambda$
$f=v_{w} \cdot n / 2 L=(T L / m) \cdot n / 2 L=n / 2(T / m L)$
$f=1 / 2 . \quad(200 \mathrm{~N} / 0.025 \mathrm{~kg} \cdot 1.2 \mathrm{~m})=\underline{41 \mathrm{~Hz}=\mathrm{f}}$

Welcome to the Real World Examples

7. A cord is anchored to a wall at one end. It passes over a pulley and is attached to a mass at the other end. When the cord is plucked, it vibrates in its fundamental mode. The sound waves that emerge from the cord have a wavelength of 78 cm . The cord is 63 cm long and has a mass of 5.4 g .
a. What is the resonant frequency of the cord?
$v_{w}=f \lambda \quad f=v_{w} / \lambda$
$f=343 \mathrm{~m} / \mathrm{s} / 0.78 \mathrm{~m}=440 \mathrm{~Hz}$ (frequency of the sound waves = frequency of the waves in the cord)
b. What is the wavelength of the fundamental mode of vibration in the cord?
$\lambda=2 \mathrm{~L} / \mathrm{n}$
$\lambda=2(0.63 \mathrm{~m}) / 1=1.26 \mathrm{~m}$
c. What is the speed of a wave in the cord?
$v_{w}=f \lambda$
$v_{w}=440 \mathrm{~Hz} \cdot 1.26 \mathrm{~m}=554 \mathrm{~m} / \mathrm{s}$
d. What is the weight of the mass?
$v_{w}=(T L / m) \quad T=v_{w}{ }^{2} m / L$
$T=(554 \mathrm{~m} / \mathrm{s})^{2} \cdot 0.0054 \mathrm{~kg} / 0.63 \mathrm{~m}=2630 \mathrm{~N}$
8. A radar gun sends out waves with a frequency A toward a moving object. The waves reflected from the moving object return to the radar gun with a frequency B. The waves travel with a speed r; the radar gun is at rest. What is the speed v of the moving object? If $A=100,000.000 \mathrm{~Hz}, B=100,000.020 \mathrm{~Hz}$, and $r=300,000,000 \mathrm{~m} / \mathrm{s}$, what is v ?
a. Determine the frequency (C) at which the waves arrive at the moving object. The object (observer in this case) moves with a speed +v ; the radar gun (source) is at rest, the waves move with speed +r . $C=A[(r-v) / r]$
b. The waves are thus emitted from the car (back to the radar gun) at frequency C. Now determine an expression for the frequency B at which the waves return to the radar gun. The source is now the object which moves with a speed $-v$ (opposite the direction from source to observer).
$B=C[(r /(r+v)]$
$B=A[(r-v) / r] \cdot[r /(r+v)]$
$B(r+v)=A(r-v)$
$B r+B v=A r-A v$
$B v+A v=A r-B r$
$v=r(A-B) /(A+B)$
$v=300,000,000 \mathrm{~m} / \mathrm{s}(100,000.000 \mathrm{~Hz}-100,000.020 \mathrm{~Hz}) /(100,000.000 \mathrm{~Hz}-100,000.020 \mathrm{~Hz})$
$v=-30 \mathrm{~m} / \mathrm{s}$ (object is moving at $30 \mathrm{~m} / \mathrm{s}$ toward radar gun)
