

PhyzGuide: Magnetic Force

MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

When a current carrying wire is placed in a magnetic field, it is acted upon by a force due to magnetism. Remember that a currentcarrying wire is surrounded by its own magnetic field—a field that could interact with the magnetic field of a permanent magnet or that of another current-carrying wire.

Vector:	$\mathbf{k} = \mathbf{I} \nabla \mathbf{R}$	F is the force due to magnetism I is the current through wire that force F is acting upon
Scalar:	$F = ILB\sin\varphi$	L is the length of wire immersed in the magnetic field B is the external magnetic field that the wire is in ϕ is the angle between direction of current and
when $I \perp$	B : $F = ILB$	direction of magnetic field

MAGNETIC FORCE ON A MOVING CHARGED PARTICLE

This equation can be rewritten to determine the magnetic force on a single moving charge:

Current in terms of charge and time is

I = q/t

And since the speed of the particle is

v = d/t (d = a distance equal to length L)

We can write length

$$L = vt$$

So with the substitutions, F = ILB becomes F = (q/t)(vt)B or

Vector:	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$	F is the magnetic force acting on the charged particle	\odot	\odot	0	0
Scalar:	$F = qvBsin\phi$	q is the charge on the charged particle v is the velocity of the charged particle B is the external magnetic field through which the charged particle passes	0 0	\odot	Ģ , O	0 0
when $\mathbf{v} \perp \mathbf{B}$:	F = qvB	$\boldsymbol{\varphi}$ is the angle between velocity vector and magnetic field direction	 0	0	0	0

e