A Slippery Affair

1-4: Series Slides
Develop equations for the characteristics of each slide in terms of the elevation \mathcal{E} and run length R of slide 1.Then compare the expressions for the individual inclines (I_{1}, I_{2}, etc.) and tota incline of each slide to the original incline I_{0} by means of a product (ex: $2 I_{0}$) or quotient (ex: $I_{0} / 3$). Repeat comparisons for power.
1.Yer Basic Slide
\mathcal{E}

$$
\begin{aligned}
& V_{0}=\varepsilon \\
& I_{0}=\varepsilon / R \\
& P_{0}=\varepsilon^{2} / \mathrm{R}
\end{aligned}
$$

2.Double-Length $\left(R_{1}=R_{2}=R\right)$

$$
\begin{aligned}
& V_{T O T}=\varepsilon \\
& I_{\text {TOT }}=\varepsilon / 2 \mathrm{R}=I_{O} / 2 \\
& V_{1}=\varepsilon / 2 \\
& V_{2}=\varepsilon / 2 \\
& P_{\text {TOT }}=\varepsilon^{2} / 2 \mathrm{R}=\mathrm{P}_{0} / 2 \\
& I_{1}=\varepsilon / 2 \mathrm{R}=I_{O} / 2 \quad I_{2}=\varepsilon / 2 \mathrm{R}=I_{O} / 2 \\
& P_{1}=\varepsilon^{2} / 4 R=P_{0} / 4 \quad P_{2}=\varepsilon^{2} / 4 R=P_{O} / 4 \quad R_{E Q}=2 R
\end{aligned}
$$

3.Thrice-as-Nice ($R_{1}=R_{2}=R_{3}=R$) (this time, you draw in the V's and I's)

$$
\begin{aligned}
& V_{\text {TOT }}=\varepsilon \\
& V_{1}=\varepsilon / 3 \\
& V_{2}=\varepsilon / 3 \\
& V_{3}=\varepsilon / 3 \\
& I_{\text {TOT }}=\varepsilon / 3 \mathrm{R}=I_{O} / 3 \\
& I_{1}=\varepsilon / 3 R=I_{0} / 3 \quad I_{2}=\varepsilon / 3 R=I_{O} / 3 \quad I_{3}=\varepsilon / 3 R=I_{O} / 3 \quad P_{\text {TOT }}=\varepsilon^{2} / 3 R=P_{O} / 3 \\
& P_{1}=\varepsilon^{2} / 9 R=P_{0} / 9 \quad P_{2}=\varepsilon^{2} / 9 R=P_{0} / 9 \quad P_{3}=\varepsilon^{2} / 9 R=P_{0} / 9 \quad R_{E Q}=3 R
\end{aligned}
$$

4. Unequal Runs ($R_{2}=3 R_{1} ; R_{1}=R$) (this time, you draw in the $V \mathrm{~s}$ and $/$'s)

