PHYZSPRINGBOARD:

ANOTHER SLIPPERY AFFAIR

Develop equations for the characteristics of each slide in terms of the elevation \mathcal{E} and run length R of slide 5. Then compare the expressions for the individual inclines $(I_1, I_2, \text{etc.})$ and total incline of each slide to the original incline I_0 by means of a product (ex: $2I_0$) or quotient (ex: $I_0/3$). Repeat comparisons for power.

5. Yer Basic Slide (dig the groovy 3-D)

$$V_{o} =$$

$$P_0 =$$

6. Slide-by-Slide $(R_1 = R_2 = R)$

$$V_{TOT} =$$

$$I_{TOT} =$$

$$V_1 =$$

$$V_2 =$$

$$P_{TOT} =$$

$$I_1 =$$

$$I_2 =$$

$$R_{FO} =$$

$$P_1 =$$

$$P_2 =$$

7. Make Mine a Triple $(R_1 = R_2 = R_3 = R)$ (this time, you draw in the V's and I's)

Diagram note: the gray "plank" R_2 is partially obscured; R_3 is completely blocked from view.

$$V_{TOT} =$$

 $V_1 =$

 $V_2 =$

 $V_3 =$

 $I_{TOT} =$

 $I_1 =$

 $I_2 =$

 $I_3 =$

 $P_{TOT} =$

 $P_1 =$

 $P_2 =$

 $P_3 =$

 $R_{EQ} =$

8. Fast-or-Slow $(R_2 = 3R_1; R_1 = R)$ (this time, you draw in the V's and I's)

$$V_1 =$$

 $V_2 =$

 $V_{TOT} =$

$$I_1 =$$

 $I_2 =$

 $I_{TOT} =$

$$P_1 =$$

 $P_2 =$

 $P_{TOT} =$

 $R_{EQ} =$