PHYZSPRINGBOARD: CURRENT AND VOLTAGE

It is often difficult to distinguish current from voltage when first learning about electric circuits. The following exercise uses analogies to develop a conceptual distinction between the two. The analogies are neither perfect nor complete, but they should help you understand these otherwise abstract quantities.

Definitions The rate at which ch	narge flows, or the amount	of charge that passes a	point in a specif	fic interval of
time is	·			
The amount of ener	gy stored in a specific amo	unt of charge is		_•
	eed below, characterize the icate the current and anoth		•	
1. One dynastride d shown. small current	udette walking along as	2		
small voltage	LARGE VOLTAGE		DC AMPERES	DC VOLTS
2. One circus dudettsmall current	te fired from a cannonLARGE CURRENT	···::> >= 0	DC AMPERES	DC VOLTS
small voltage	LARGE VOLTAGE			
along as shown.	dynastride dudes walking	222		
small current small voltage	LARGE CURRENTLARGE VOLTAGE		DC AMPERES	DC VOLTS
4. A fleet of circus d	udes fired from multiple	···::::>>>		
small current	LARGE CURRENT	···::::> > •	DC AMPERES	DC VOLTS
small voltage	LARGE VOLTAGE			
5. A high-pressure, i used to cut through	narrow stream of water is concrete.			
small current	LARGE CURRENT		DC AMPERES	DC VOLTS
small voltage	LARGE VOLTAGE			

6. Water gently casc stepped fountainsmall currentsmall voltage	ades over a large,LARGE CURRENTLARGE VOLTAGE	DC AMPERES	DC VOLTS
7. Water crashes into Fallssmall currentsmall voltage	the base of NiagaraLARGE CURRENTLARGE VOLTAGE	DC AMPERES	DC VOLTS
Make Your Own Ar	nalogies:*		
8.			
small current √small voltage	√ LARGE CURRENT LARGE VOLTAGE	DC AMPERES	DC VOLTS
9.			
√ small current small voltage	LARGE CURRENT √ LARGE VOLTAGE	DC AMPERES	DC VOLTS
10.			
small current	√ LARGE CURRENT	DC AMPERES	DC VOLTS

Changes

small voltage

11. Suppose a trickle of water were coming out of a hose. If the faucet controlling the flow of water to the hose were then "cranked up," what—if anything—would change in terms of current and voltage?

LARGE VOLTAGE

- 12. Suppose one spillway gate of a large dam were open. If a second were then opened, what—if anything—would change in terms of current and voltage?
- 13. Suppose an adjustable shower head were configured to give a low-pressure flow. If it were then adjusted to give a high-pressure spray (without changing the rate of water usage), what—if anything —would change in terms of current and voltage?

*Hint: consider automobile traffic, for example.