PhyzExamples: Parallel Circuits

In ALL circuits...

$I_{tot} = \frac{\varepsilon}{R_{eq}}$ OHM'S LAW The total current in the circuit is equal emf of the voltage source (battery) div by the equivalent resistance of the circuit

$$P_{tot} = I_{tot} \varepsilon$$
 JOULE'S LAW
The total power developed in the circuit is
equal to the product of the total current and
the emf of the voltage source.

$$P_{tot} = P_1 + P_2 + P_3 + \cdots$$

In PARALLEL circuits...

$$I_{tot} = I_1 + I_2 + I_3 + \cdots$$

$$\varepsilon = V_1 = V_2 = V_3 = \cdots$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

In ANY resistor R_n ...

$$V_n = I_n R_n$$
 $P_n = I_n V_n$ $P_n = V_n^2 R_n$ $P_n = I_n^2 R_n$

PARALLEL CURRENT

POWER SUM

The current in a parallel circuit is divided among parallel resistors. The total current in the circuit is equal to the sum of the currents across each resistor.

The total power in the circuit is equal to sum of the power values of each of the resistors.

PARALLEL VOLTAGE

The potential in a parallel circuit is the same across all elements of the circuit. (Equal to the emf of the battery.)

PARALLEL EQUIVALENT RESISTANCE The inverse of the equivalent resistance of a parallel circuit is equal to the sum of the inverse values of the resistances of each resistor. (Easier to write as an equation!)

is

Given this information, what can be determined about the circuit? EVERYTHING!!!

1. Since the potential in the circuit is 40 V (same across all resistors in parallel) and the total current in the circuit is 20 A, the equivalent resistance in the circuit is

 $R_{eq} = \mathcal{E}/I = 40 \text{ V} / 20 \text{ A} = 2 \Omega$

2. Since $R_2 = 5 \Omega$ and V = 40 V, the current through R_2 is

 $I_2 = V/R_2 = 40 \text{ V} / 5 \Omega = 8 \text{ A}$

3. The power dissipated in R_2 is

 $P_2 = V^2/R_2 = (40 \text{ V})^2 / 5 \Omega = 320 \text{ W}$

4. Since the power dissipated in R_3 is 300 W, the current through R_3 is

$$I_3 = P_3 / V = 300 \text{ W} / 40 \text{ V} = 7.5 \text{ A}$$

5. And the resistance of R_3 is

 $R_3 = V^2/P = (40 \text{ V})^2 / 300 \text{ W} = 5.3 \Omega$

6. Since the equivalent resistance of the circuit is 2 Ω , R_2 is 5 Ω , and R_3 is 5.3 Ω , R_1 can be found:

$$1/R_1 = 1/R_{eq} - 1/R_2 - 1/R_3 = 1/2 \Omega - 1/5 \Omega - 1/5.3 \Omega$$
 thus $R_1 = 8.9 \Omega$

7. The current through R_1 is

$$I_1 = I_{tot} - I_2 - I_3 = 20 \text{ A} - 8 \text{ A} - 7.5 \text{ A} = 4.5 \text{ A}$$
 or $I_1 = V/R_1 = 40 \text{ V} / 8.9 \Omega = 4.5 \text{ A}$

8. And so the power dissipated in R_1 is

$$P_1 = V^2 / R_1 = (40 \text{ V})^2 / 8.9 \Omega = 180 \text{ W}$$

9. So the total power dissipated in the circuit is

$$P_{tot} = P_1 + P_2 + P_3 = 180 \text{ W} + 320 \text{ W} + 300 \text{ W} = 800 \text{ W}$$

or $P_{tot} = I\mathcal{E} = 20 \text{ A} \cdot 40 \text{ V} = 800 \text{ W}$