

In ALL circuits...

$$
\begin{aligned}
& I_{t o t}=\frac{\varepsilon}{R_{e q}} \\
& P_{t o t}=I_{t o t} \varepsilon \\
& P_{t o t}=P_{1}+P_{2}+P_{3}+\cdots
\end{aligned}
$$

OHM'S LAW
The total current in the circuit is equal to the emf of the voltage source (battery) divided by the equivalent resistance of the circuit.

JOULE'S LAW
The total power developed in the circuit is equal to the product of the total current and the emf of the voltage source.

POWER SUM
The total power in the circuit is equal to sum of the power values of each of the resistors.

PARALLEL CURRENT

The current in a parallel circuit is divided among parallel resistors. The total current in the circuit is equal to the sum of the currents across each resistor.

PARALLEL VOLTAGE
The potential in a parallel circuit is the same across all elements of the circuit. (Equal to the emf of the battery.)

PARALLEL EQUIVALENT RESISTANCE The inverse of the equivalent resistance of a parallel circuit is equal to the sum of the inverse values of the resistances of each resistor. (Easier to write as an equation!)

In ANY resistor $R_{n} \cdots$

$$
V_{n}=I_{n} R_{n} \quad P_{n}=I_{n} V_{n} \quad P_{n}=V_{n}^{2} / R_{n} \quad P_{n}=I_{n}^{2} R_{n}
$$

Given this information, what can be determined about the circuit? EVERYTHING!!!

1. Since the potential in the circuit is 40 V (same across all resistors in parallel) and the total current in the circuit is 20 A , the equivalent resistance in the circuit is

$$
R_{e q}=\varepsilon / I=40 \mathrm{~V} / 20 \mathrm{~A}=2 \Omega
$$

2. Since $R_{2}=5 \Omega$ and $V=40 \mathrm{~V}$, the current through R_{2} is

$$
I_{2}=V / R_{2}=40 \mathrm{~V} / 5 \Omega=8 \mathrm{~A}
$$

3. The power dissipated in R_{2} is

$$
P_{2}=V^{2} / R_{2}=(40 \mathrm{~V})^{2} / 5 \Omega=320 \mathrm{~W}
$$

4. Since the power dissipated in R_{3} is 300 W , the current through R_{3} is

$$
I_{3}=P_{3} / V=300 \mathrm{~W} / 40 \mathrm{~V}=7.5 \mathrm{~A}
$$

5. And the resistance of R_{3} is

$$
R_{3}=V^{2} / P=(40 \mathrm{~V})^{2} / 300 \mathrm{~W}=5.3 \Omega
$$

6. Since the equivalent resistance of the circuit is $2 \Omega, R_{2}$ is 5Ω, and R_{3} is $5.3 \Omega, R_{1}$ can be found:

$$
1 / R_{1}=1 / R_{e q}-1 / R_{2}-1 / R_{3}=1 / 2 \Omega-1 / 5 \Omega-1 / 5.3 \Omega \quad \text { thus } R_{1}=8.9 \Omega
$$

7. The current through R_{1} is

$$
I_{1}=I_{t o t}-I_{2}-I_{3}=20 \mathrm{~A}-8 \mathrm{~A}-7.5 \mathrm{~A}=4.5 \mathrm{~A} \quad \text { or } \quad I_{1}=V / R_{l}=40 \mathrm{~V} / 8.9 \Omega=4.5 \mathrm{~A}
$$

8. And so the power dissipated in R_{1} is

$$
P_{1}=V^{2} / R_{l}=(40 \mathrm{~V})^{2} / 8.9 \Omega=180 \mathrm{~W}
$$

9. So the total power dissipated in the circuit is
$P_{\text {tot }}=P_{1}+P_{2}+P_{3}=180 \mathrm{~W}+320 \mathrm{~W}+300 \mathrm{~W}=800 \mathrm{~W}$
or $\quad P_{t o t}=I \varepsilon=20 \mathrm{~A} \cdot 40 \mathrm{~V}=800 \mathrm{~W}$
