PhyzExamples: Electric Curreut \& Circuits

Nhysical Quantities•Symbols• Units•Brief Definitions

Charge • q or $Q \bullet$ coulomb [KOO lom]: $\mathrm{C} \bullet$ A characteristic of certain fundamental particles. Current $\bullet I \bullet$ coulomb per second: C/s or ampere: A• The rate at which electric charge flows. Voltage $\bullet V$ or $\mathcal{E} \bullet$ joule per coulomb: J / C or volt: $\mathrm{V} \bullet$ Electric potential energy per unit of charge; electric "oomph."
Resistance $\bullet R \bullet$ volt per amp: V/A or ohm: $\Omega \bullet$ A measure of the obstruction to flow of electric charge that a body possesses.
Power $\bullet P \bullet$ watt: $\mathrm{W} \bullet$ The rate at which energy is transferred in an electric circuit.

Equations

$I=q / t \cdot$ current $=$ charge $/$ time
$I=V / R$ or $\mathcal{E} / R \bullet$ Ohm's Law \bullet current $=$ voltage $/$ resistance
$P=I V$ or $I \mathcal{B} \bullet$ Joule's Law \bullet power $=$ current \cdot voltage
$P=I^{2} R \cdot$ power $=$ square of current \cdot resistance
$P=V^{2} / R$ or $\mathcal{B}^{2} / R \cdot$ power $=$ square of voltage $/$ resistance

Smooth Operations Examples

1 . What is the current in a wire if 15.7 C of charge move past a point in the wire every 2.3 s ?

1. $q=15.7 \mathrm{C} \quad t=2.3 \mathrm{~s} \quad \mathrm{I}=$?
$I=q / t$
$I=15.7 \mathrm{C} / 2.3 \mathrm{~s}$
$I=6.8 \mathrm{~A}$
2. A current of 0.82 A passes through a $47-\Omega$ resistor. What is the potential difference across the resistor?
(The question is asking for the voltage.)
3. $1=0.82 \mathrm{~A} \quad \mathrm{R}=47 \Omega \quad \mathrm{~V}=$?
$I=V / R$
$V=\mathbb{R}$
$V=0.82 \mathrm{~A} \cdot 47 \Omega$
$V=39 \mathrm{~V}$
4. What is the resistance of a $1500-\mathrm{W}$ hair dryer that draws 13 A of current?

$$
\begin{aligned}
& \text { 4. } P=1500 \mathrm{~W} \quad I=13 \mathrm{~A} \quad R=? \\
& P=I^{2} R \\
& R=P / I^{2} \\
& R=1500 \mathrm{~W} /(13 \mathrm{~A})^{2} \\
& R=8.9 \Omega
\end{aligned}
$$

6. How much voltage must be applied to an $8-\Omega$ resistor to produce 27 W of power?
7. $\mathrm{P}=27 \mathrm{~W} \quad \mathrm{R}=8 \mathrm{~V} \quad \mathrm{~V}=$?
$P=V^{2} / R$
$V=\sqrt{ } P R$
$V=\sqrt{ }(27 \mathrm{~W} \cdot 8 \Omega)$
$V=15 \mathrm{~V}$

Equations from comlining Ohm's Law and Joule's Law

Complete all the petals of the flower by rearranging $I=V / R, P=I V, P=I^{2} R$, and $P=V^{2} / R$.

