THE GREEK ALPHABET

Name	Pronunciation Letter	Letter	Name	Pronunciation	Letter	
Alpha	AL fuh A	α	Nu	NOO	N	v
Beta	BAY tuh B	β	Xi	ZI	Ξ	ξ
Gamma	GAM uh $\quad \Gamma$	γ	Omicron	O mih kron	O	o
Delta	DEL tuh Δ	δ	Pi	PI	Π	π
Epsilon	EP sih lon E	ε	Rho	ROE	P	ρ
Zeta	ZAY tuh Z	ζ	Sigma	SIG muh	Σ	σ
Eta	AY tuh H	η	Tau	TAO, TAW	T	τ
Theta	THAY tuh $\quad \Theta$	θ	Upsilon	UP sih lon	Y	v
Iota	eye OH tuh	t	Phi	FI, FEE	Ф	ϕ
Kарра	KAPuh K	κ	Chi	KI	X	χ
Lambda	LAM duh $\quad \Lambda$	λ	Psi	SI, SEE	Ψ	ψ
Mu	MYOO M	μ	Omega	o MEH guh	Ω	ω
MATHEMATICAL SYMBOLS						
Symbol	Definition					
\propto	proportional to T		Time spent studying \propto grade earned in a class			
\approx	approximately equal to		5,367,831 $\approx 5,367,832$			
\sim	about; approximately		The population of the US is $\sim 300,000,000$. velocity \equiv change in position per change in time			
三						
\#	defined as; identical to not equal to		if $a=3$ and $b=5, a \neq b$			
>	greater than		$2+2>3$			
<	less than 2		$2+2<5$			
\geq	greater than or equal to If		If $x+5 \geq 12$, then $x \geq 7$			
\leq	less than or equal to f		$f \leq \mu N$			
>>	much greater than 5		5,367,831,729,405 >> 1			
<<	much less than 1		$1 \ll 5,367,831,729,405$			
\Rightarrow	leads to; yields		$a+b=c \Rightarrow b=c-a$			
\therefore	therefore		$a=b$ and $b=c \quad \therefore a=c$			
$\sqrt{ }$	square root $\sqrt{ }$		$\sqrt{ }(9+16)=5$			
Σ	the sum of		$\Sigma \mathbf{F}=m \mathbf{a}$			
Δ	change in		$\mathbf{v} \equiv \Delta \mathbf{d} / \Delta t$			
\mathbf{x}	the vector "x"		the displacement vector $\mathbf{x}=(4 \mathrm{~m}, 7 \mathrm{~m})$			
II	parallel to		the ceiling is II to the floor			
\perp	perpendicular to		the floor is \perp to the wall			
$\|x\|$	absolute value of x the scalar value of \mathbf{x}	$\|-23\|=23$				
$\|\mathbf{x}\|, x$			$\left.30^{\circ}\right) \therefore$ a	7m; $\mathbf{c}=(3 \mathrm{~m}$,) \therefore	

In physics, we must often be mindful of direction. If something is moving, for example, it must be moving in some direction. Or if a force is being exerted on an object, that force is being exerted in some direction. Below are a few reference diagrams that sort out the various ways scientists and mathematicians specify directions.

One-Dimensional (1D)

A particle that is constrained to motion in one dimension can move only forward or backward along a line. Surely you have fond memories of the "number line." The number line is an example of "one-dimensional space," also known as a "line."

Two-Dimensional (2D)

Two-dimensional space is known as a "plane." Examples of 2D space include a table top, the floor, the glass in a window, or any other flat surface.

Rectangular (Cartesian) Coordinates

Polar Coordinates

"Left" is considered the negative x direction.
"Up" is considered the positive y direction.
"Down" is considered the negative y direction.
"Right" is considered the positive

$$
\begin{aligned}
& \text { Directions are specified by } \exists \quad x \text { direction. } \\
& \text { x and } v \text { coordinates. The } \\
&
\end{aligned}
$$ x and y coordinates. The direction shown is $(5,3)$.

Three-Dimensional (3D)

Three-dimensional space is known simply as a "space." Space includes all the familiar geometric directions. All real objects occupy three dimensions. For instance, a rectangular solid (like a shoebox) has dimensions of length, width, and height.

Symbolic Notation

 Right \rightarrow Up \uparrow
 Down \downarrow
 In \times
 Out .

${ }^{*}$ IN is away from you: into the paper, into the board **OUT is toward you: out of the paper, out of the board

Conventional $+z$ 3D Coordinates

Vocab

Collinear: along the same line
Parallel: in the same direction

Concurrent: at the same point
Antiparallel: in opposite directions

