## PhyzExamples: 1D Algelraic Kinematics

1. A marathon runner runs 26 miles in 3 hrs . What is the runner's average speed in $\mathrm{m} / \mathrm{s}$ ?
$x=26 \mathrm{mi}=42 \mathrm{~km}=42,000 \mathrm{~m}$
$t=3 \mathrm{hr}=10,800 \mathrm{~s}$
$v=x / t$
$v=42,000 \mathrm{~m} / 10,800 \mathrm{~s}$
$v=3.9 \mathrm{~m} / \mathrm{s}$
2. A skier starting from rest accelerates in a straight line down a slope at $2 \mathrm{~m} / \mathrm{s}^{2}$. How fast is he or she moving after 7 s ?
$v_{0}=0 \quad a=2 \mathrm{~m} / \mathrm{s}^{2} \mathrm{t}=7 \mathrm{~s}$
$v=v_{O}+a t \quad\left[v_{O}=0\right]$
"starting from rest" means $v_{0}=0$
$v=\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)(7 \mathrm{~s})$
$v=14 \mathrm{~m} / \mathrm{s}$
3. At this point, our skier plows into a snow bank and comes to rest in 0.50 s . What was the acceleration involved?
$\mathrm{v}_{0}=14 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=0 \quad \mathrm{t}=0.5 \mathrm{~s}$
"comes to rest" means $v=0$
$v=v_{0}+a t$
$a=\left(v-v_{O}\right) / t$
$a=(0-14 \mathrm{~m} / \mathrm{s}) / 0.50 \mathrm{~s}$
$a=-28 \mathrm{~m} / \mathrm{s}^{2}$
4. How far did the skier plow into the snow bank during the 0.50 s of deceleration?
$v_{O}=14 \mathrm{~m} / \mathrm{s} \quad v=0 \mathrm{~m} / \mathrm{s} \quad \mathrm{t}=0.5 \mathrm{~s}$

$$
\begin{aligned}
x & =1 / 2\left(v_{O}+v\right) t \quad\left[v_{O}=0\right] \\
& =1 / 2(14 \mathrm{~m} / \mathrm{s}) \cdot 0.5 \mathrm{~s} \\
x & =3.5 \mathrm{~m}
\end{aligned}
$$

5. A stone is dropped from a height of 5 m . How long will it be in the air?
$y=5 \mathrm{~m} \quad v_{O}=0 \mathrm{~m} / \mathrm{s} \quad v=? \quad a=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{t}=$ ?
$y=v_{0} t+1 / 2 a t^{2} \quad$ Use this equation $v_{0}=0$
$y=1 / 2 a t^{2}$
$t=(2 y / a)$
$t=\left(2.5 \mathrm{~m} / 10 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{t}=1.0 \mathrm{~s}$ because the WHO CARES quantity is v (we don't know v , and we don't need to know v)
6. A stone is dropped from a height of 5.0 m . What is its speed upon impact?
$y=5 \mathrm{~m} \quad v_{O}=0 \quad v=? \quad a=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{t}=$ ?
$v^{2}=v_{o}^{2}+2 a y \quad$ Use this equation
$v^{2}=2 a y \quad$ because the WHO
$v=$ (2ay)
$v=(2 \cdot 10 \mathrm{~m} / \mathrm{s} \cdot 5.0 \mathrm{~m})$
$v=10 \mathrm{~m} / \mathrm{s}$ CARES quantity is t (we don't know t, and we don't need to know t)
7. If a car goes from rest to $20 \mathrm{~m} / \mathrm{s}$ in 5 s , how far did the car go during this acceleration?

$$
\begin{aligned}
& x=? \quad v_{O}=0 \quad v=20 \mathrm{~m} / \mathrm{s} \quad a=? \quad t=5 \mathrm{~s} \\
& x=1 / 2\left(v_{0}+v\right) t \quad\left[v_{0}=0\right] \\
& x=1 / 2(20 \mathrm{~m} / \mathrm{s}) \cdot 5 \mathrm{~s} \\
& x=50 \mathrm{~m}
\end{aligned}
$$

8. What was the acceleration during those 5 s ?

$$
\begin{aligned}
& v=v_{O}+a t \\
& a=\left(v-v_{O}\right) / t \quad\left[v_{O}=0\right] \\
& a=(20 \mathrm{~m} / \mathrm{s}) / 5 \mathrm{~s} \\
& a=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

